20

Three Interactions between Al and
Education

Kenneth Kahn

MIT Al Laboratory
Cambridge. Massachusetts

The understanding of intelligence that has arisen from Al research can be
applied to education to significantly enhance learning. The LOGO project,
described herein, is based on this premise. Extensions of the LOGO experience
are proposed that are based on Al in interesting ways. One extension is to
encourage children to write simple AI programs. Tools to aid the child in this
endeavor are discussed. Another supplement to LOGO is the interaction of the
child with AI programs specially designed for this purpose. These programs, in
addition to being easily used by children, should be modifiable by children in
interesting ways. The specifications of such a program are described.

INTRODUCTION

This paper describes some ideas concerning three different ways in which Al
can play a role in education, which are illustrated in Figure 1. Children can both
be encouraged to write simple AI programs and to interact with specially
designed Al programs. Both of these interactions with Al are guided by the
understanding of intelligence and learning that has arisen from AI research.
These ideas are within the framework of the LOGO project at MIT. LOGO is
concerned with the more general problem of enhancing education by applying
the concepts that have come from Al research, A description of how LOGO
attempts to do this is described in the next two sections. Following that are
some of the author’s ideas as to how AI can enhance education in ways that
supplement LOGO’s.

THE LOGO PHILOSOPHY

One of the main occupations of a child is to learn, Yet, typically no effort is
made in schools to encourage the child to learn how to learn, or even what this
means. The explicit teaching of general principles of learning, at least without
many examples, does not accomplish this task. The theory, to the child, is
abstract and difficult to understand—even more difficult to use.
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Al THEORIES
OF INTELLIGENCE
AND LEARNING

INTERACT

Al “TEACHING”
PROGRAMS

FIG. 1. The three roles of Al in education

The child should, instead, acquire some good “powerful ideas”* for learning
and problem solving. The discovery of “powerful ideas” is central to Al research
and some have been developed. For instance, the notion of “linearization,” or
the strategy of attacking the sub-problems of a problem independently, and then
dealing with the interactions is a powerful idea. Another one is to view “bugs” in
a solution as things to correct and learn from, not mistakes that lower a test
score. These ideas are typified in Sussman’s HACKER (Sussman, 1975). Some
other powerful ideas are “naming of concepts”, “planning”, and “being explicit
about one’s one thinking”. Most important of all the powerful ideas is the
notion of a powerful idea itself,

If children could really learn these powerful ideas they would presumably be
better students and better problem solvers. But how are they to learn these
ideas? What is needed is an environment where these notions surface frequently,
where one needs to be explicit about problem solving, an environment where the
problems are often found to be intrinsically interesting, an environment where

TAs they are called by Seymour Papert
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the children constantly use powerful ideas to accomplish their goals. Pro-
gramming is one such environment. “Linearizing” becomes “implementing
subroutines independent of other subroutines”. “Naming of concepts” becomes
“naming subprocedures and variables”. Debugging is an important component of
programming.

There are other beneficial effects of choosing programming as an environment
which if properly created can help the child become a better student. These are:

1) The experience of working on a long-term project, solving sub-problems
and planning as one goes

2) The experience of having explicit control over one’s environment

3) The experience of learning about the domain to which the child’s pro-
grams apply

4) The experience of finding that mathematics can be useful.

Equally important is that children usually find it fun.

The reader should note, however, that there is no claim made here the pro-
grammers are any smarter, or any better learners, than other people. It is not the
act of programming that encourages one to pick up powerful ideas, rather it is
programming well chosen problems, within a language that encourages powerful
concepts (such as recursion), and with proper guidance by a teacher.

Computers provide a rich environment for the child to develop concepts of
problem solving and learning, Other environments, however, are also useful
towards this end. The learning of physical skills, such as circus arts, constitute
such an environment. The main thesis is that the right verbal description of a
physical skill does aid greatly in learning it. Also, interaction of learning in this
domain and programming is rich. The child can learn that the powerful ideas
learned while programming are useful for more everyday activities.

THE LOGO LANGUAGE

The LOGO language was developed to provide the kind of environment in
which children can learn to learn. It is a programming language that is human
engineered (or more accurately “child engineered”). The structure of the
language, the primitives, and their names were designed to aid in the kind of
conceptual thinking described above.

An important part of LOGO is a form of computational geometry called
“Turtle Geometry™. A turtle is a computational entity with a state consisting of
a position and a headirig. A turtle accepts commands, telling it move forward or
backward, that change its position. It also accepts commands to turn left and
right, thereby changing its heading. Turtles are usually realized as physical
devices called “floor turtles” or as “cursors” on a display. Turtles also have a pen
that can leave a trail as they move.

As an example, let us consider a turtle procedure for drawing a polygon. The
procedure expects two inputs, the size of each side and the amount the turtle
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should turn after drawing each side. More details are shown in Figure 2.

TO POLY :SIZE :ANGLE
10 FORWARD :SIZE

20 RIGHT :ANGLE

30 POLY :SIZE :ANGLE
END

FIG. 2a. Turtle procedure for drawing a polygon

\

FIG. 2b. Picture produced by the call POLY 100 90

FIG. 2c. Picture produced by the call POLY 1 1

FIG. 2. An example of Turtle Geometry

Children can prove Turtle Geometry theorems that are useful, not only for
proving more theorems, but for writing programs. A theorem called the “Total
Turtle Trip Theorem” is an example. It states that if a turtle takes a trip and
ends up in the same state (position and heading) in which began, then the total
amount turned right (minus that turned left) is a multiple of 360 degrees.
Children usually understand the intuition of the proof when asked to think
about a broken turtle that could not move, only turn. This theorem is very
useful in writing state independent subprocedures,

The previous sections describe the LOGO Laboratory as background for what
follows. The rest of this paper deals with ideas and research of the author that is
consistent with the LOGO framework, but relies more heavily on AI research.

Al FOR CHILDREN

There are several good reasons why children should write and interact with Al
programs, a few of which follow:

1) Children are encouraged to think explicitly about how they solve
problems. Hopefully the children will thereby improve their ability to
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describe and understand their own thoughts.

2) The problem domain to which the Al programs are applied is learned, and
in a new and perhaps better way

3) If children are to program, then Al can be an interesting open ended
problem domain for that programming

4) The children will learn about Al which is a subject, in the opinion of the
author, that is as important as spelling or history.

As an example, consider a child writing a simple natural language understanding
system. The child will hopefully learn much about computational linguistics and
something about how he or she talks and listens.

To facilitate Al programming of, for example, natural language under-
standing, or common sense systems, the proper primitives (from the child’s point
of view) need to be provided. For this purpose the author has developed a set of
programs LOGO called “LAIL” for LOGO AI Language. LAIL contains a set of
operators useful for writing AI programs. Currently LAIL consists of the fol-
lowing tools:

1) A powerful pattern matcher for natural language understanding

2) A context-free generator for sentence generation to which the child
provides rules.

3) A relational data base handler facilitates memory and inference

4) An actor-like animation system which is described later.

Most important of all, these tools should be simple, powerful, natural, and
encourage the right kind of conceptual thinking.

AN ACTOR-LIKE ANIMATION SYSTEM

Animation is a programming domain for children in which I am particularly
interested. My dissatisfaction with the present animation primitives in LOGO led
to the design and implementation of an animation system written in LOGO.
Each object in the system is very similar to an “actor” in Carl Hewitt’s

formalism (Hewitt, 1973). An actor is a computational entity that can receive
and transmit messages. Each object in my system can accept turtle-like com-

mands (e.g. forward), remember items told to it, and be taught how to handle
new kinds of messages. Each object has a set of patterns which are matched
against the incoming message. If a pattern matches then the action associated
with that pattern is invoked. Paralle]l movements of objects on the display screen
are handled by an actor called a *“scheduler”. When the scheduler is sent a
message asking it to run, it passes those messages it has associated with the time,
redisplays the screen, increments the time, and loops. The scheduler can also
produce actors called “movies” that can show a cartoon at any reasonable speed.
An example of the use of this system is shown in Figure 3.

The view of programming as collections of actors, or a community of “little
people”, that send and receive messages from each other is very powerful. It is
conducive to a modular, simple, natural representation of the knowledge needed
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SQUARE [MAKE GEORGE]
This sends the message “make George” to SQUARE, which creates a square named George

GEORGE [REMEMBER SPEED 25]

This tells George his speed of movement

GEORGE [IF RECEIVE ZIG ZAG ?N THEN ZIG.ZAG “GEORGE :?N]
George is told that if he receives the message “zig zag” followed by some amount, then he is
to call the appropriate procedure

CIRCLE [MAKE SALLY]

A circle named Sally is created

SALLY [DO FORWARD 100 AT FRAME 2]

Sally is told to go forward 100 at movie frame 2. This problem is passed on to the scheduler

GEORGE [DO ZIG ZAG 75 AT FRAME 2]
George is told to zig zag at frame 2

SCHEDULER [GO]

The scheduler is told to go. After 2 frames the appropriate messages are sent to Sally and to
George, producing the following cartoon:

>-> /\/

FIG. 3. An ACTOR-like animation system, an example of its use
for the application. The model for intelligence can be a community as easily as it
can be an individual with an actor system.

Another AT aspect of this system is the explict “kind-of”* hierarchy of actors.
Each object is told what class it is a member of when it is created. When any
object received a message it cannot handle it passes the problem on to the class
of which it is a member. An example of such a tree is shown in Figure 4. The
important concepts of instantiation, class membership, placement of knowledge

EFTEE PEOPLEI

MOVI ES]

FIG. 4. Actor hierarchy

427



KAHN

at the best level of generality, inheritance of properties, and exceptions hope-
fully flow from the proper use of this aspect of the system.

AN INTELLIGENT ANIMATION SYSTEM

Another environment for leamning powerful ideas is one in which the child
interacts with specially designed Al programs. I am in the process of designing an
intelligent animation system as a test of this hypothesis. In the normal mode of
interaction the child will tell a story concerning the “Peanuts” characters, and
the system produces an animated cartoon based on the story. The child can then
describe the modifications he or she desires. The system produces a new cartoon
and the process iterates until the child is satisfied (or quits). The usual concepts
of linearization, debugging, and the like prevail here without the need to learn a
computer language. Hopefully the child will learn about animation, film making,
and story telling by writing stories and scripts to produce the desired cartoons.
An hypothetical example of a conversation with this system is shown in Figure
3

User: Charlie Brown is walking and meets Lucy. He says, “‘Good morning”. She says,
“What's so good about it?..."”. Charlie Brown frowns and says, “Good Griefl".

The system shows the cartoon after having made many simple inferences and default
choices. For example, it decides where to put Lucy and Charlie Brown, how fast they walk,
how they are oriented, their facial expressions, and so on.

System: How was that?

User: OK, but Lucy should look crabby when she says, *'What's so good about..."”.

The system changes the necessary parts of the cartoon and shows the new one.

User: That's fine

FIG. 5. A hypothetical discussion with the intelligent animation system.

Another more important way in which a child could interact with this
planned system is by understanding and modifying the knowledge of the
system. The system’s knowledge about animation techniques, the real world,
common sense facts about people and things, and the “Peanuts” characters will
be as modular and simply represented as possible. The child, with the help of the
system, will be able to define new characters for the stories, change the system’s
vocabulary, add a reasonable default course of action and so on.

One hope is that in understanding and modifying the knowledge of an intelli-
gent system the children will actually see the knowledge of something actually
accomplish something complex. The idea that knowledge and intelligence can be
something formal should help the children to be more explicit about their own
thoughts and knowledge. The use of the system will also, hopefully, help provide
a vocabulary for talking and thinking about one’s thoughts. If the design and
implementation of this intelligent animation system is done well, it will provide
a rich and exciting supplement to LOGO’s traditional environment.

428



DIALOGUE-TRANSFER OF KNOWLEDGE TO HUMANS

SUMMARY

In this paper three ways in which AI can interact with education have been
described. After an introduction to LOGO thinking and language, the benefits of
children writing simple Al programs using the proper tools were described.
Finally, the ways in which an AI system designed for education can interact with
children were discussed. These ideas should be implemented and tested with
children. Only then will the effects on education be known.
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